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Abstract 
 

 

This paper presents a multi-narrowband signal processing paradigm that is based on the use of the warped 
discrete Fourier transform (WDFT). The WDFT evaluates a discrete-time signal in the context of a non-
uniform frequency spectrum, a process called warping. Compared to a conventional DFT or FFT, which 
produces a spectrum having uniform frequency resolution across the entire baseband, the WDFT’s frequency 
resolution is both non-uniform and programmable. This feature is exploited for use in analyzing multi-
narrowband signals which are problematic to the DFT/FFT. The paper focuses on optimizing frequency 
discrimination by determining the best warping strategy and control by using the intelligent search algorithms 
and criteria of optimization, or cost functional. The system developed and tested focuses on maximizing the 
WDFT frequency resolution over those frequencies that exhibit a localized concentration of spectral energy 
and, implicitly, diminishing the importance of other frequency ranges. The paper demonstrates that by 
externally controlling the frequency resolution of the WDFT in an intelligent manner, multi-narrowband 
signals can be more readily detected and classified. Furthermore, the WDFT can be built upon an FFT 
enabled framework, insuring high efficiency and bandwidths. 
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1. Introduction 
 

Multi-narrowband signal analysis including detection and discrimination is a continuing signal processing 
problem. The applications include dual-tone multi-frequency (DTMF) systems, Doppler radar, electronic 
countermeasures, wireless communications, OFDM-based radar exciters, to name but a few. Traditional multi-
narrowband signal analysis systems are based on a filterbank architecture that uses an array of product modulators to 
heterodyne signals down to DC, and then processes the down-converted array of signals with a bank of lowpass 
filters.  The output of the filterbank is then processed using a suite of energy detection operations to detect the 
presence of tones and multiple narrowband tones (Vassilevsk, 2007). The capability of such a system to isolate and 
detect multiple narrowband signals is predicated on the choice of initial modulating frequencies and post-processing 
algorithms. Other approaches to the problem are based on multiple signal classification (MUSIC) algorithms, least 
mean-square (LMS) estimators, and DFT derivatives such as Goertzel algorithm (Evans, 1996).  The approach taken 
in this paper is to explore the use of another DFT derivative called the warped discrete Fourier transform or WDFT(Makur 
et al., 2001; Franz et al., 2003). 
 

2. FFT- The Enabling Technology 
 

The discrete Fourier transform(DFT) is indisputably an important signal analysis tool, finding applications in 
virtually all engineering and scientific endeavors. Generally, the preferred implementation of the DFT is the venerable 
Cooley-Tukey fast Fourier transform (FFT) algorithm.  
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An N-point DFT X[k], 0kN-1, of a length-N time-series x[n], 0nN-1, is defined by:  

𝑋 𝑘 =  𝑥[𝑛]𝑒−𝑗2𝜋𝑘𝑛 /𝑁

𝑁−1

𝑛=0

, 0 ≤ 𝑘 ≤ 𝑁 − 1.                              (1) 

 

For spectral analysis applications, the DFT provides a uniform frequency resolution Δ=2π/N over the 

normalized baseband [-, ]. That is, the DFT’s frequency resolution Δ is uniform across the entire baseband. 
This fact historically has limited the role of the DFT in performing acoustic and modal (vibration) analysis, 
applications that prefer to interpret a signal spectrum using logarithmic (octave) frequency dispersions. Another 
application area in which a fixed frequency resolution is a limiting factor is multi-narrowband signal detection and 
classification. It is generally assumed that if two tones are separated by 1.6Δ (1.6 harmonics) or less, then a uniformly 
windowed DFT/FFT cannot determine if one tone or multiple tones are present at a harmonic frequency due to 
spectral leakage, which obscures the spectral separation between adjacent DFT harmonics (Mitra et al., 1993). This 
problem is exacerbated when data widows are employed (e.g., Hamming window). This condition is illustrated in Fig. 
1. In Fig. 1(a), two tones separated by one harmonic (i.e., Δ) are transformed. The output spectrum is seen to consist 
of a single peak, losing the identification of each individual input tone because their main lobes get closer and 
eventually overlap. In the other case reported by Fig. 1(b), the two tones being transformed are separated in frequency 
by two harmonics (i.e., 2 Δ). The presence of two distinct tones is now self-evident.  
 

 
Figure 1: Magnitude spectrum for two tones using a 64-point DFT. (a) Two tone separated by one harmonic. 
(b) Two tones separated by two harmonics. 
 

3. The Warped Discrete Fourier Transform (WDFT) 
 

The WDFT is a derivative of the familiar DFT filterbank (Taylor et al., 1999). It differentiates itself from the 
standard DFT filterbank in that it contains an additional pre-processed stage. The WDFT can be developed in the 
context of multi-rate and polyphase signal processing theory (Mitra, 2001). A polyphase multi-rate filter architecture, 
shown in Fig. 2, was used to implement a WDFT (Galijasevic et al., 2002). In Fig.2, the filter function A(z) is as a pre-
processing all-pass filter.  For the case where A(z)=1, the design degenerates to a traditional uniform DFT filterbank 
(Taylor et al., 1999;Mitra, 2001). For the case where A(z)=1 and the polyphase terms Pi(z)=1, the architecture shown 
in Fig. 2 becomes an N-point DFT.   
Formally the N-point WDFT, reported in Fig. 2 for Pi(z)=1, is defined in terms of a DFT and pre-processing the all-
pass filtered data, filtered by A(z) , where:    
 

𝐴 𝑧 =
−𝑎 + 𝑧−1

1 − 𝑎𝑧−1
                                                              (2) 

 

where “a”is real and is called the warping control parameter. For stability reasons, “a” ranges between -1 and 1.  
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Figure 2. Polyphase multi-rate FFT Filterbank. 

 

To motivate the behavior of a WDFT, consider the experiment reported in Fig.3.The uniform resolution DFT 

case (Pi(z)=1 and a=0) is compared to the non-uniform resolution case (Pi(z)=1 and a = 0.3). The ability of locally 
control the frequency resolution of the WDFT is clearly demonstrated.  In addition, if a lowpass subband shaping 
filter polyphase filter (P(z)= 

 

 Σz-iPi(z)) is employed (e.g., approximate ideal lowpass FIR), then additional control can be exercised over the shape 
and frequency selectivity of the WDFT spectrum. 

 
(a) 

 
(b) 
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(c) 

Figure 3. WDFT experiments:   corresponds to normalize baseband in [0,π]. 16-channel (a)  uniform FFT 
spectrum, (b) nonuniform FFT spectrum for a = -0.3, (c) nonuniform FFT spectrum for a = 0.3. 
 

Concentrating on the WDFT case where P(z)=1, it may be recalled that the standard z-transform of an N-
point input time series x[n], namely  

𝑋 𝑧 =  𝑥[𝑛]𝑧−𝑛
𝑁−1

𝑛=0

.                                                            (3) 

The warping filter converts the input into: 
 

𝑋  𝑧 =  𝑥[𝑛]𝐴(𝑧)𝑛
𝑁−1

𝑛=0

.                                                         (4) 

 

Recall that the conventional DFT of x[n], namely X[k], produces a spectrum given by: 
 

𝑋 𝑘 =  𝑋(𝑧) 𝑧=𝑒 𝑗2𝜋𝑘 /𝑁 , 0 ≤ 𝑘 ≤ 𝑁 − 1.                              (5) 
 

where X[k] is evaluated at z=ej2πk/N, a point the uniformly resolved locations on the periphery of the unit circle 

in the z-domain.  The WDFT coefficients, 𝑋 [𝑘], are similarly obtained by uniformly sampling 𝑋 (𝑧) at points on the 
unit circle in the z-domain, namely: 
 

𝑋  𝑘 =  𝑋 (𝑧) 𝑧=𝑒 𝑗2𝜋𝑘 /𝑁 , 0 ≤ 𝑘 ≤ 𝑁 − 1.                            (6) 
 

The conventional uniform frequency resolution DFT, defined by z = ejω, has harmonic frequencies located at 

frequencies ω = 2πk / N, k ∈ [0, …,N-1]. The center frequencies of an N-point WDFT spectrum are located at the 

warped frequencies 𝜔  where 𝑧 = 𝑒𝑗𝜔 , which are associated to ω through the non-linear frequency warping relationship 
 

tan  
𝜔 

2
 =  

1 − 𝑎

1 + 𝑎
 tan  

𝜔

2
 .                                                  (7) 

 

Equation (7) establishes a non-linear frequency warping relationship that is controlled by the real parameter 
“a”. A positive “a” provides higher frequency resolution on the high frequency region and a negative value of “a” 
increases frequency resolution in the low frequency region (see Fig. 3). 
 

The effect of the warping relationship is demonstrated in Fig. 4 which compares a DFT (a = 0) to WDFTs for 
a = -0.071, a = -0.23 and a = -0.4 for the case where two tones are present separated by a single DFT harmonic. It is 
easily seen that by intelligently choosing the control parameter “a” the locally imposed frequency resolution can be 
expanded or contracted. To enhance the system’s frequency discrimination, the frequency resolution should be 
maximized in the local region containing the input signals. As such, an intelligent agent will need to assign the best 
warping parameter “a” strategy, one that concentrates the highest frequency resolution in the spectral region occupied 
by the multi-narrowband process. 
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(a)                                        (b) 

 
(c)                                                       (d) 

Figure 4. Magnitude spectrum for two tones with 64-point WDFT with (a) a = 0, (b)  a = -0.071, (c) a = -0.23, 
and (d) a = -0.40. 
 

The next section describes the outcome of a preliminary study that compares two criteria and two search 
algorithms and develops an “intelligent” frequency resolution discrimination policy that can be used to improve multi-
narrowband detection. 
 

4. Optimization of Frequency Resolution 
 

To optimize the choice of the warping parameter “a”, |a|<1, an intelligent search algorithm or agent is 
needed. An initial search strategy is being evaluated and enabled using optimal single-variable search techniques, a 
Fibonacci search2(Kwon et al., 2008)and a modified Golden Section search3(Kwon et al., 2012). The search process is 
expected to iterate over a range of values of “a” that places a high local frequency resolution in the region occupied by 
multi-narrowband activity.  To find the best warping parameter “a”, two criteria of optimization and cost functionals 
have been singled out for focused attention. The search methods iteratively restrict and shift the search range so as to 
optimize spectral resolution within a convergent range. The direction of the search is decided by the value of the cost 
functional at two points in the range. 
Two criteria studied to date are developed below.  

                                                           
2The Fibonacci search technique is a method of searching a sorted array using a divide and conquer algorithm that narrows down 
possible locations with the aid of Fibonacci numbers. 
3The Golden Section search is a technique for finding the extremum (minimum or maximum) of a unimodal function by 
successively narrowing the range of values inside which the extremum is known to exist. 
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A. Criterion #1 

𝛷1 𝜔  = 𝑚𝑎𝑥
𝑘

 𝑋 [𝑘] −   𝑋  𝑘  𝜔 𝑏
                                           (8) 

where b is a frequency within the search interval and )(1  is designed to reward a local concentration of spectral 

energy and penalize more sparsely populated section of the spectrum.  The optimal operating point corresponds to a 
warping parameter “a” that maximizes the local spectral resolution in a region of signal activity.  
B. Criterion #2: 

Φ2 𝜔  =   𝜎 − 𝑋  𝑘                                                        (9) 

where σ is the threshold used to suppress leakage and 
2 ( ) is designed to reward the local concentration of spectral 

energy.  
 

Table 1 Comparison of the warping parameter 
 

Criterion Criterion #1 Criterion #2 

Search Method Fibonacci search 
M.Golden section 
search 

Fibonacci search 
M.Golden section 
search 

Warping parameter a = -0.1087 a = -0.0721 a = -0.0996 a = -0.1381 

Elapsed time (sec) t = 0.749252 s t = 0.888743 s t = 0.736151 s t = 0.151035 s 
 

5. Results and Comparison 
 

The paper reports on a multi-narrowband signal discrimination study conducted using two search methods, 
namely a Fibonacci search and a modified Golden Section search algorithm. Both are iterative methods that restrict and 
shift the searching range so as to determine an optimal operating point within a frequency range. Studies based on these 
criteria involved presenting to the WDFT frequency discriminator of two sinusoidal tones located at 0.157 and 0.314 
rad/s. The search method was charged to find the “best” warping parameter. The comparison of results is shown in 
Table 1 and the evidence of this activity can be seen in Fig. 5. To compare the temporal efficiency of each case, Table 1 
also shows elapsed time needed to execute a search using MATLAB. The two tones, separated by one harmonic, were 
unresolved with 64-point DFT but resolved with 512-point DFT at the expense of increased complexity (see Fig. 5 (a) 
and (b), respectively). In Fig. 5 (c)-(e), however, the two tones are seen to be present using 64-point WDFT. To 
calibrate the WDFT spectra, the locations of the actual two tones are also shown. Comparing the outcomes, a 
Fibonacci search  

 
(a)                                            (b) 

 
(c)                                                    (d) 
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(e)                                                   (f) 

 

Figure 5. (a) Magnitude spectrum for two tones with (a) 64-point DFT (a = 0) and (b) 512-point DFT (a = 0) 
and magnitude spectrum for two tone detection with 64-point WDFT with (c) a = -0.1087, (d) a = -0.0721, (e) 
a = -0.0996 and(f) a = -0.1381. 
 

was found to be the fastest and most effective in finding the “best” warping parameter using either search criteria. 
Criterion #1 resulted in frequency resolution with a bigger variation according to search methods, while Criterion #2 
facilitated the optimization of the local resolution and identified the two tones closer to the actual locations of the tones.  
 

6. Conclusion 
 

This paper aims at exploring spectral analysis using the warped discrete Fourier transform (WDFT) compared 
to a conventional discrete Fourier transform (DFT). It focuses on detecting multiple narrowband signals which are 
not able to be isolated with uniform frequency resolution and optimizing the local frequency resolution by finding the 
best warping control strategy. And the system developed and tested also focuses on maximizing the WDFT frequency 
resolution over those frequencies that exhibit a localized concentration of spectral energy and, implicitly, diminishing 
the importance of other frequency ranges. This paper demonstrates that multi-narrowband signals are able to be more 
readily detected and discriminated by externally controlling the frequency resolution of the WDFT in intelligent 
manners using optimal single-variable search techniques, a Fibonacci search and a modified Golden Section search. 
Finally, this paper shows the best frequency resolution reducing spectral leakage which obscures the spectral 
separation between of adjacent DFT harmonics due to the finite frequency resolution of the DFT without increasing 
the DFT length for multi-narrowband detection using the WDFT. In fact, an increase in the DFT length improves the 
sampling accuracy by reducing the spectral separation of adjacent DFT samples, while it brings up the higher 
computational complexity and cost penalty. In order to minimize and suppress spectral leakage the WDFT is 
exploited to control the spectral separation through the warping parameter.  
 

Moreover, the usage of the WDFT presents obtaining higher and optimized local frequency resolution 
through finding the best warping control strategy. In general, a uniformly windowed DFT/FFT cannot determine if 
one tone or multiple tones are present locally about a harmonic frequency for two tones separated by 1.6 Δ (1.6 
harmonics) or less. It shows that, however, the WDFT can discriminate between two signals separated by as little as 
1.3 harmonics. Overall, the new spectral analysis technology using the WDFT results in a higher local resolution, less 
computational complexity, more capability, and lower cost. 
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