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Abstract 
 

 

Additive manufacturing (AM) is a crucial component of a smart factory that promises to change traditional 
supply chains. However, the parts built using state-of-the-art 3D printers have noticeable unpredictable 
mechanical properties. In this paper, a machine learning (ML) model is proposed as a promising approach to 
improve the underlying failure phenomena in the AM process. The paper also describe how a ML model can 
be distributed to form an interactive learning network of smart AM components to fulfil the Industry 4.0 
requirements including self-organization, distributed control, communication, and real-time decision-making 
capability. 
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1.  Introduction 
 

The industrial automation was previously enabled by Programmable Logical Controller (PLC) that provided 
synergy between information technology and electronics. In this system, the workforce has a specific and repetitive 
task generally without high-level skills. In smart manufacturing system (also known as Industry 4.0) (Hermann, 
Pentek, & Otto, 2016), machines and robots provide a high automation level with the ability to process information, 
enhance the yield of production (Zhang, Mehta, Desai, & Higgs, 2017), visualize the performance in real-time (Xu, 
Mei, Ren, & Chen, 2017), enable intelligent predictive maintenance system (K.-S. Wang, Li, Braaten, & Yu, 2015), and 
match service providers with customer demands. 

 

There were some suggestions to implement the control system for a smart factory including a combined 
system composed of virtual reality and rapid prototyping (Zawadzki & Żywicki, 2016) and a dynamic algorithm for 
the simultaneous selection of machine structure and job assignment (Ivanov, Dolgui, Sokolov, Werner, & Ivanova, 
2016). The architecture of the most decentralized control system is fitted to a dynamic environment with the ability to 
quickly adapt to change. However, coordinating a single machine that attempts to pursue its objective and at the same 
time pursuing the global objective of the system remains a challenge for the control system. As such, most of the 
control systems are a mixture of centralized and decentralized architectures (Brennan, 2000) that cannot fully address 
the requirement of Industry 4.0 (Meissner, Ilsen, & Aurich, 2017). Also, there is no concrete information on how it 
can enable the management, interoperability, and control of data inside a smart factory. Most of the previous research 
studies focus on the control system and communication of a smart factory based on cyber-physical systems (CPS) and 
cloud-computing platforms (Liu, Shahriar, Al Sunny, Leu, & Hu, 2017) and little attentions to the technical enabling 
of machines in a smart factory. 

 

Additive Manufacturing (AM) is a crucial component of the smart manufacturing system to enable flexible 
configuration and dynamic changing processes (Scholz-Reiter, Weimer, & Thamer, 2012), quickly adapt the products 
to new demands, and eventually change traditional supply chains. AM has tremendous potential to make a custom-
designed part on-demand with minimal material, but it is hampered by poor process reliability and throughput due to 
lack of the condition-awareness of the AM process and automation. The parts built using current state-of-the-art AM 
machines have noticeable unpredictable mechanical properties.  
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Currently, almost all AM machines have only limited sensing capabilities that are mostly inaccessible to the 

users, or completely “open-loop” system operating without any feedback measurement systems for correction during 
the process. However, future AM machines must be a smart system that can perform self-monitoring, self-calibrating, 
and quality self-controlling in real-time. The gap between the smart factory and existing manufacturing systems can be 
bridged concerning the automation, flexibility, and reconfigurability of AM machines in an interactive distributed 
network as a natural way of scaling up learning algorithms. 

 

Machine learning can play an important role to create multi-level of predictive models for both individual AM 
machine operation (Zhang et al., 2017) and the system-level smart factory management. However, a few ML models 
have been explored in existing studies and the application of ML algorithm for improving the AM process has been 
limited to powder quality, specific processes, and applications. For instance, Chen et. al. (Chen & Zhao, 2015) 
developed a ML model to optimize parameters of a Binder Jetting (BJ) process without a comprehensive 
understanding of why the ML model would work better for some particular processes. Some papers are only focused 
on controlling powder quality using ML model: Zhang et. al (Zhang et al., 2017) trained a machine learning model 
using computational data of the discrete element method to introduce a powder spreading map for the metal AM 
process. Decost et. al. (DeCost, Jain, Rollett, & Holm, 2017) used computer vision and machine learning methods to 
characterize, compare, and analyze powder feedstock materials and micrographs for metal AM process. Stoyanov et al. 
(Stoyanov & Bailey, 2017) used a ML algorithm to control the quality of 3D inkjet printing for electronic circuits. 

 

In this paper, we propose the application of machine learning for controlling AM machines (D. Wang, 
Khosla, Gargeya, Irshad, & Beck, 2016) and managing a smart factory. Smart 3D printers need to keep track of the 
AM process to manage AM operations and optimize the procedure by adjusting the process parameters as they sense 
certain properties of a build. We describe how a distributed ML algorithm can quickly and dynamically adapt to the 
change in the manufacturing environment, coordinating a single machine for its objective and pursuing the global 
objective of the system at the same time. The rest of the paper is organized as follows. Section 2 presents the 
proposed ML model for improving the AM process in 3D printers. Section 3 presents the attribute and properties of 
the distributed ML model in a smart factory and explains how this model fulfils the requirements of Industry 4.0 
including self-organization, distributed control function, communication between the smart components, and real-
time decision-making capability. The section also discusses how the model benefits a smart factory focusing on 
product performance, security, reliability, scalability, and cost-efficiency. Section 4 draws summarizing conclusions. 

 

2. Machine Learning Model For Improving Additive Manufacturing Process 
 

Additive manufacturing plays a critical role to produce high-quality industrial parts, but its application for 
large-scale finished goods is minuscule due to the challenges in scaling down the AM process. A smart AM machine 
improves the geometry and mechanical properties as shown in Fig.1 (fotografie).  AM machines can be empowered by 
the ML model to fabricate miniaturized builds with complex geometry that are usually difficult to be fabricated by the 
subtractive- or deformation-based manufacturing processes. For instance, hollow objects with thin-shell structures 
seem more suitable for hybrid fabrication because AM processes can overcome accessibility limitations to the internal 
features. Figure 2 shows the two-step strategy to establish the closed-loop ML algorithm for AM machines: the offline 
training of an ML system for identifying multi-model correlation and representative sensor and the use of the offline 
trained ML model for real-time AM process control. 

 

 
 
Figure 1: Example of three structural nodes that all support the same weight, but the part on the right that 
manufactured by 3D printing and machine learning algorithms weight 75% less and is 50% smaller than the original 
part on the left (fotografie). 
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Figure 2: Two-step strategy to establish the closed-loop ML algorithm for AM process control. 

 

2.1.  Offline ML Model 
 

Offline Training of ML Model is the first step to establish the closed-loop ML algorithm for AM machines as 
shown in Fig.2. The procedure includes four sub-steps as follows: 

 

2.1.1. Filming AM Process: By filming the AM process, one can understand what characteristics would lead to a good build by 
observing the behavior of each powder layer before, during, and after laser scanning. Powder spreading (Perret, Graf, & Sagmeister, 2004) 
and laser scanning (Jia & Gu, 2014) are important factors for the quality of the final part. This includes filming the build of every layer 
in printing simple geometric shapes like flat bars and cylinders and record any streaks, pits, divots and other patterns in the powder layer 
that are practically invisible to humans. 
 

2.1.2. Collecting Sensory: Multiple sensors can be used to capture certain properties of the printed build from different perspectives. 
Different types of sensors measure certain characteristics of every layer of the samples. For instance, the thermal images of selective fusing can 
be captured using IR cameras as the process parameter data (e.g. process temperature), which can significantly affect the mechanical 
properties of the final metal part (e.g. residual stress, strength, porosity and microstructure due to poor thermal gradients in metal AM 
processes). In the case of noisy sensor data, data pre-processing techniques such as temporal-spatial smoothing, convolutional filtering, and 
clustering can be used to refine online sensing data, which are critical in real-time monitoring. 
 

2.1.3. Collecting Mesoscale Information: The final builds will be examined using neutron testing (Gnäupel-Herold, Slotwinski, & 
Moylan, 2014), Raman (Beard, Ghita, & Evans, 2011), or a powerful CT scanner (Karme, Kallonen, Matilainen, Piili, & Salminen, 
2015)to hunt for flaws in the printed part. The powder-bed 3D printers are optimized to work only with a handful of powders and the 
parts built using such printers have a rough exterior and porous interior. Collecting and analyzing the optical scan imaging data of the 3D 
printed metal parts provides mesoscale information that we either can’t see or may not know what to look for(Brooks et al., 2018). 
 

The training ML algorithm interpolates between the observed mechanical performance in the final sample 
and process signatures in the powder layers during the laser scanning process. The well-trained ML correlates defects 
in the final parts with powder layer patterns and other AM process parameters. Once the comprehensive sensing data 
are correlated with mechanical properties and printing qualities, and a couple of simple sensors have stood out as 
representatives, one can use the correlation to control multiple tasks in the AM process in real-time. 

 

2.2.  Real-Time AM Process Control 
 

As the smart AM machine creates a large amount of real-time data, it warrants the effective use of online ML 
techniques so that the smart control system learns and adapts while the AM machine is operating. Given a collection 
of training samples with ground truth labels from human experts, multi-modal multi-task learning can be developed to 
correlate measurements from different sensors and techniques to identify a few representative instruments such as 
mechanical properties prediction and defect detection. The selected sensors will be used to collect real-time data, and 
input to the correlation function obtained from the offline DNN model to predict the mechanical properties and 
possible defects in real-time. The ML model will observe the real-time behavior of the powder layers and other real-
time sensory data to predicts and flag system failures before they happen, leading to a better chance of getting to the 
100 percent yield. The system will decide on “go” or “no go” and suggest potential remedial actions.  

 



64                                               Journal of Computer Science and Information Technology, Vol. 7(2),December 2019 
 

 
The smart 3D metal printers track the repetitive spreading of powder and selective fusing to automatically 

modify the AM parameters to generate layers with desirable roughness and porosity. The ML model extracts the 
physical variations in powders, classify powders with different distributions of particle size, shape, and surface texture, 
and relate these microstructural features of powders to processing parameters (flowability and spreadability) and build 
outcomes (porosity and flaws). 

 

A closed-loop ML model in a smart 3D printer can manage AM operations and optimize the procedure 
autonomously by adjusting the process parameters as they sense certain properties of a build. The more often we print 
samples, the smarter the ML model gets and eventually have enough training to automatically predict a problem, and 
in real-time, suggest changes to reach a flawless build. This turns 3D metal printers into essentially their inspectors by 
eliminating the need to inspect parts after they are completely built. As such, the machine makes better products, 
faster, with fewer errors, resulting in a breakthrough in productivity. The new AM task can be used to increase the 3D 
printing database so that AM machine trains over time to recognize any issues with the process itself and make proper 
adjustments and corrections itself. The ML model eventually has enough training to automatically predict a problem, 
provide the derived insights immediately and suggest changes in real-time to reach a flawless build. AM machine 
empowered by machine learning can observe new and different scenarios, takes in new part build data, learns from 
experience, becomes smarter and more capable, continuously improve the manufacturing process, automatically self-
correct/compensate the deficiencies, thereby adds another layer of quality control. This enhances the process and 
quality of the AM process, thereby produce better parts with fewer quality hiccups, limiting waste of time and 
materials. 
 

3. Distributed Machine Learning Model of Additive Manufacturing Process in a Smart Factory 
 

In this section, we describe how ML models of AM machines can be distributed to comply with a smart 
manufacturing system.  The product quality, system productivity and sustainability can be improved through fully 
connected manufacturing machines (e.g. 3D printers) that are monitored by sensors and controlled by an advanced 
computational intelligence. The unprecedented volumes of manufacturing data can be analyzed by data-driven 
intelligence to model the complex multivariate nonlinear relationships among data and extract actionable and 
insightful information for smart manufacturing.  The manufacturing is experiencing an unprecedented increase in 
available sensory data from manufacturing equipment, manufacturing process, production line, environmental 
conditions, and labor activity. To establish manufacturing intelligence, the huge collected data is essential to be 
handled and processed in real-time by big data modelling and analyzing methods (Kusiak, 2017). Data modelling and 
analysis is an essential part of smart manufacturing to fulfil the current and future needs for efficient and 
reconfigurable production (Vogl, Weiss, & Helu, 2016). Monitoring machinery conditions is crucial for a smart factory 
to identify the incipient defects and thereby avoid the failures caused by degradation or abnormal operating 
conditions, resulting in lower operating costs, higher productivity, less disqualified part waste, and less unexpected 
downtime (Park, Kwon, Park, & Kang, 2016). Manufacturing intelligence enables precise insights for better decision 
making and thereby improves product designs, processes, operations, fault detection, maintenance, and quality 
(Harding, Shahbaz, & Kusiak, 2006). 

 

In future smart factories, not only the components (e.g. 3D metal printers) are smart to make local decisions, 
but also the system is smart and context-aware resulting in two layers of smart decision-making system. In this 
scenario, we need a  distributed machine learning (DML) model as an interactive learning procedure among AM 
machines and a natural way of scaling up ML algorithms. The trained ML model represents a hypothesis for a single 
AM machine, but the DML model is not necessarily contained within the hypothesis space of the models from which 
it is built, showing more flexibility in the functions. AM has tremendous potential to make a custom-designed part on-
demand with minimal material, but it is hampered by poor process reliability and throughput, especially in metal 
printing. The 3D printers equipped with sensors and communication capabilities can further improve the condition-
awareness of AM processes and the level of automation resulting in a quality product with the potential to dynamically 
changing with customer demands (Lalanda, Morand, & Chollet, 2017; Tao & Qi, 2017). An adaptive ML algorithm for 
3D printers can be developed with the ability to learn from printing  experience commanded by users. However, there 
might be a circumstance that the machine performance is low for printing new build because of no data and 
experience. To develop better ML algorithm that incorporates these experiences, one may collect more data by 
printing the build with such types of AM features or by obtaining AM data from other 3D machines and store in a 
hub to analyze by centralized unit and make a very comprehensive all-purpose ML algorithm for all the AM machines 
in the smart factory. However, a unique comprehensive ML algorithm is not efficient since it deviates from the 
specific kinds of AM task for a machine.  
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In a very limited case, a machine needs learning many experiences, e.g. printing unique geometries or 

materials. Also, this method means a huge data collection and transmission to the hub and far away from the goal of 
industry 4.0. The DML model could employ the pre-trained ML model from a relevant task for its initialization. Fine-
tuning is possible by transferring the data for new printing experience through closed-loop structure that enables 
knowledge updating and intelligence upgrading. This cyber-physical system empowered by ML algorithm monitors 
AM processes, creates a virtual copy of the physical process, and makes decentralized decisions based on self-
organization mechanisms. The smart 3D printers will make decentralized decisions and communicate using a virtual 
copy of the DML system to achieve the goal of intelligent, resilient and self-adaptable components (Lee, Bagheri, & 
Kao, 2015) (see Fig. 3). The smart 3D metal printers are interconnectively synchronized with their corresponding 
modules in virtual space creating feedback loops in which physical processes affect its virtual model in real-time and 
vice versa (Hofmann & Rüsch, 2017; Lee, 2015). The aggregation of sensor data enables the creation of a virtual 
environment in which the design can be checked, modified, and tested prior to its order into the physical system 
(Zawadzki & Żywicki, 2016). This integrates computation, networking, and physical processes. In the DML model, 
the mind is in the individual machine with a certain degree of self-control to learn from its own experience and adapt 
the ML algorithm for the type of AM task 3D printers must do. The DML model enables not only a smart system to 
adjust the components for new demands and circumstances, but also each component of the system to act smart and 
communicates with each other to either request or offer functions. Each AM machine needs to process and learn 
separately from its own collected data, but also share and give access to some data for other AM machines. In this 
model, the raw collected data from all the machines will not be used to decide for every component of the system, but 
an individual AM machine has the authority to decide how to improve its task using its own collected data. The ML 
model is developed based on just its own experience without sharing raw data in the centralized hub while it makes 
the result of training experience available for other AM machines in the smart factory. The DML model fulfils the 
requirements of the smart factory as follows: 

 

A. Self-organization: The ML models of smart AM machines are capable of managing the operations and optimizing the 
procedure autonomously by adjusting their parameters as they sense certain properties of a build. In a manufacturing chain, the modular 
structure of smart AM machines results in the improvements of the entire process due to the customization and personalization of smart 
machines for the types of builds that they are usually printing within the interconnected network. The distributed control function using 
smart AM machines is one of the main requirements for the modular and decentralized structure of Industry 4.0. 
 

B. Information on Workpieces: The local ML algorithm enables AM machine to extract the information from the 
current and targeted build (design in the CAD software) and thereby recognize if the available ML algorithm in the machine has enough 
AM experience to successfully print the build or it is new and different scenarios that need the AM experience of other machines available 
in the smart factory. The digital information is embedded into the build that can be shared with other smart AM machines via the proposed 
DML model as it moves along the production line. This information will be interpreted by a cyber-enabled DML model so that a machine 
knows if the AM task is in the domain of its high chance of success or an anomaly setting that are not experienced before and needs to use 
other resources or experience. 

C. Communication with Other AM Machines: In the production line of a typical smart factory, many machines will 
be fully connected by a constant stream of data through the DML model to communicate with each other to either request or offer functions. 
The local smart AM machines who need more training experience must search for the machines with the better trained ML algorithm on 
the needed AM tasks and communicate with them to adapt its ML algorithm to other AM training without having to communicate with 
the central control unit. The AM machines are independent of each other and central hub while autonomously communicating with each 
other, e.g. along the value chain, to obtain the required AM parameters and feature if there is a lack of local training experience for 
printing new build. All the AM machines can make intelligent decisions based on the data collected from their process, i.e. using various 
sensors, but communicate with each other to predict various supply chain scenarios. 

D. Real-Time Capability: The smart AM machine is seamlessly integrated into the information network with the 
capability to collect and analyses its own AM data using the local ML algorithm and use the AM experience of other machines in the case 
of printing a build with a new scenario. The DML model eventually has enough training to automatically predict a problem, provide the 
derived insights immediately and suggest changes in real-time to reach a flawless build.  
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Figure 3 Conceptual schematics of a smart AM factory composed of modular and decentralized smart 3D printers 
that communicate the lesson of its own machine learning algorithm with each other. 

 

The ML model leads to big efficiency gains by achieving just-in-time maintenance and near-zero downtime 
and significant time-to-market reductions. The DML model improves product performance, security, reliability, 
scalability, cost and prevent downtime and failure as follows: 
 

A. Improved Product Performance: The ML computations and sensors are integrated into physical 3D metal printers allowing 
in-process detection of any areas of quality concern so that it is trained over time to recognize any issues with the build itself to make proper 
adjustments and improve the printing performance. The different AM machines can have the best learning algorithms of their data while the 
communication between different learning processes is an integration of different learning biases that compensate one another for their 
inefficient characteristics and thereby increases the possibility of achieving higher accuracy, especially on a large-size domain. 
 

B. Improved Security: The computations and sensors are integrated into physical 3D printers that are controlled by a local ML 
algorithm. Unlike classical could computing, the data is not collected and stored in a database for central processing (Erickson, 2009). In 
the proposed DML system, each smart AM machine maintains its dataset resulting in higher data protection and security. 
 

C. Improved Reliability: Manufacturing resources are similar to a chain fashion; failure of one ring may cause 
downtime for the whole chain. The commands for all sensors and motors of an AM machine are being processed by a 
locally trained ML algorithm that leads to distributed control functions. The local ML algorithms analyze continuously 
acquired data from its sensors and forecast equipment status and information, enabling just-in-time maintenance and 
thereby improvement in the reliability of AM process. 
D. Improved Scalability: Another advantage of distributed smart printers is that the size of a smart factory is scalable and the 
growing amount of data from additional 3D printers has a minor effect on the communication overheat. The local learning and global 
integration are the most promising solution to overcome the problems of centralized storage, resulting in accurate predictions based on 
multiple models. The DML algorithm makes AM machines precise and robust to be scaled up and used for commercial and industrial-
scale production. 
E. Improved Cost-Efficiency: The total cost of storing distributed data is much lower than the cost of storing the data in a central 
database. Similarly, the sum of the cost of analyzing subsets of data is lower than the computational cost of mining a central database. A 
distributed mining approach would make a better exploitation of the available resources. It is also unfeasible to transfer huge data volumes 
over the network to frequently update databases because it is costly and time-consuming to establish a high-bandwidth wireless network 
environment. 
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4. Summary and Conclusion 

 

Additive manufacturing has tremendous potential to make a custom-designed part on-demand, but it is 
currently hampered by poor process reliability and throughput. Machine learning can play a critical role to ensure the 
continuous growth of AM technology. In this paper, a ML algorithm for controlling the AM process was proposed to 
continuously improve the AM standard in the 3D printers. Furthermore, a distributed machine learning algorithm was 
proposed an interactive learning technique among AM machines to scale up the ML algorithms in a smart factory. 
The DML model can fulfill the requirements of industry 4.0 and benefit a smart factory through product 
performance, security, reliability, scalability, and cost-efficiency. 
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